
The Past, Present, And Future
of Extensions Management

Charles Edge

Part I

SecretChest.io

The Return Of Extensions Manager
https://github.com/krypted/extensionsmanager

Importing Code Into Swift
• Swift Package: Uncompiled folders and files with a specific format and a manifest.

• Library: Code and compiled code that can be imported into a project.

• xcframeworks: Opinionated, compiled code that has private and public structures.

• App Extensions: Discrete, signed, and compiled/factored pieces of code.

• Apps: Completed/compiled products available for distribution.

• SDK: Collection of artifacts (libraries, frameworks, & documentation) for types of applications.

• Kit: Apple’s manifestation of an SDK.

• Extension: Keyword that extends a type with components, methods, types, etc.

https://www.secret-chest.com/post/
design-patterns-and-technical-

options-when-re-using-swift-code

Some extensions are from
Apple, to be consumed

For those developers write, users
just see the Apps and App

Extensions in final products

The App

The App Extension

But I just needed to make
some of my QA tasks simpler

To future proof systems,
understand how they came to be

The Apple II was the crowning
achievement of the hobbyist

movement

People explored with type-in
programs

Then came the Macintosh

Image Courtesy of: https://commons.wikimedia.org/wiki/File:Macintosh_SE_b.jpg

GUIs made computers more
about utility

The Macintosh 512K in 1985
Had A 20MB Hard Drive

Enter the kernel

INITs

• Hackers experimented with the System suitcase and Finder file in System

• There was an INIT loader (like /etc/rc) that searched for resources at boot

• Developers figured out how to use ResEdit, to edit the resource fork of the
System suitcase to INIT their own code

• Could INIT 32 files by dropping them in the System folder

• Thus we got Desk Accessories

Desk Accessories to Extensions

• Desk Accessories were written to be drivers, but could call SystemTasks

• By System 6, suitcases stored fonts and Desk Accessories

• DA/Mover could move Desk Accessories

• Developers (and Apple) could create Control Panels as well

• Some Control Panels were hybrid extensions

System 7
The LC III Era

Today
/System/Library/Extensions

Less of the Wild West

• Early extensions had a resource type of INIT as well

• The boot loader showed extension icons at boot time

• Extensions could try to run in the same part of the system - conflicts

• Jeff Robin (who later wrote SoundJam) then wrote Conflict Catcher

• Macintosh System 7.5 added a graphical interface called Extensions
Manager (a name that should sound familiar)

Extensions Manager
Circa 1991

Maturing Classic Extension Types

• Application Program (APPL): Programs that lived in the Extensions folder

• Chooser Extensions: Network handlers, printers, scanners, etc

• Communications Toolbox (cbnd/fbnd/tbnd): Custom socket handlers

• Document: Document handlers (e.g. Sherlock)

• Library (libr/shlb): Shared libraries and open transport

• System Extension: Described on the next slide

Classic System Extensions
• Background Application (appe): Think of these as services or launchd

items now

• Component (thng): Shared code dynamically loaded when needed.

• Driver (comd for 68000 systems and ndrv for PowerPC): Drivers

• INIT (INIT): Modifies system resources at startup and can talk directly to
the kernel (similar to what later kernel extensions were).

• Scripting (scri): Never used this, just read it exists in documentation.

The list grew to include hundreds
from Apple and third parties

But conflicts…

Management?

At Ease (1992-1998)

Then Came OS X

Two Mach-based projects
became one

Copland
• Developers knew the limitations the original Mac team had baked in

• Apple developed a kernel called Nukernel based on Mach

• Copland was a “failed” project that introduced protected memory that
would eventually lead to multithreading

• Apps could invoke a new thread as a separate process in protected
memory that could communicate with the kernel, akin to kernel extensions

• Apple released Mac OS 8 instead and bought NeXT

The NeXT Legacy

• UNIX was initially free but AT&T then Novell got cranky about licensing
after BSD extended Unix and redistributed their work with the BSD license

• The Mach micro-kernel was written at Carnegie Mellon University by
Richard Rashid and Avie Tevanian

• Existing BSD 4.3 code provided compatibility with other Unix variants

• The gist: Mach + BSD + Nukernel (also Mach-based) evolved to XNU, the
hybrid kernel in modern Apple operating systems

Pipes
• With Mach came Unix Pipes; data could move between programs

• Tasks, message queues, memory management, etc gave Mach object
oriented multiprocessing capabilities.

• Less monolithic but with interprocess communications (IPC), which evolved
to xpc (see https://knight.sc/reverse engineering/2020/03/20/audit-tokens-
explained.html for XPC security)

• Services could be piped system wide

• NeXTSTEP got Objective-C as a programming language and what the
developers called kits to provide an extensible application layer

More capabilities are better to
help recruit developers

But kernel extensions were
fairly complicated

Kernel Extensions
• Kernel tasks weren’t officially supported

• Kernel extensions were added to expose various kernel data structures

• Users relied on kernel extensions so kernel advancements slowed

• Apple supported Kernel Programming Interfaces in 10.4 (Tiger) as part of the
Kernel Authorization subsystem (kauth) https://developer.apple.com/library/
archive/technotes/tn2127/_index.html

• 10.4 brought kernel “concurrency” (no more kernel locking, so better for multi-CPU
computers)

• These were mostly device, file, and network I/O tasks

https://developer.apple.com/library/archive/technotes/tn2127/_index.html
https://developer.apple.com/library/archive/technotes/tn2127/_index.html

Conflict Catcher for Mac OS X
was never released

Instead

• Less problems

• Command line tools like kextutil, kextload/
kextunload, kextstat, kextlibs

• Peter Borg’s Lingon (launchd)

• More .dylibs (third parties needed their
own shared objects)

With Unix underneath, Mac OS
X became a hacker OS

Developer Relations didn’t
have much recourse yet…

Then Came iOS in 2007

Remember The Simple Finder?

Modernized

iOS didn’t support kernel
extensions

The Application Sandbox came
to the Mac in 10.7 (2011)

But its origins lie in the “TrustedBSD
MAC Framework: Extensible Kernel

Access Control” (2000)
https://ieeexplore.ieee.org/document/1194871

https://ieeexplore.ieee.org/document/1194871

As bandwidth increased, most
apps talked to rest endpoints, not

through sockets

Cryptographic Signing became
more pervasive

(thank you CryptoKit)

MDM required a certificate

Soon, access to certain APIs,
libraries, kits, etc had to be signed

Powerful APIs needed to be
protected

iOS 2 gave us entitlements in 2008,
which came to the Mac in 2011

Code signing, notarization,
sandbox profiles, and attestation

frameworks matured

Now, Apple could revoke
certificates for bad behavior

The marketing term for some of
this became Gatekeeper

The importance of rootless
(expanded to SIP) - 2015

What good is SIP if a kernel
extension can trespass anywhere?

Example: Managed Open In
and supervision

User Accepted Kernel
Extension Loading in 10.13

There’s always backlash

Apple forged on, with Privacy
Preferences Policy Control

But the path we’re on followed
the same route it did in System 8

Which brings us to Part II:
The Present

In the meantime…

Apple has provided us with a
manicured sandbox

There are the privacy && security
issues with what extensions can

access

So it’s on developers to surface the
level of telemetry we want to give

A few extra lines of code…

https://github.com/krypted/extensionsmanager

Thank You!

